Study on the Application of the Combination of TMD Simulation and Umbrella Sampling in PMF Calculation for Molecular Conformational Transitions
نویسندگان
چکیده
Free energy calculations of the potential of mean force (PMF) based on the combination of targeted molecular dynamics (TMD) simulations and umbrella samplings as a function of physical coordinates have been applied to explore the detailed pathways and the corresponding free energy profiles for the conformational transition processes of the butane molecule and the 35-residue villin headpiece subdomain (HP35). The accurate PMF profiles for describing the dihedral rotation of butane under both coordinates of dihedral rotation and root mean square deviation (RMSD) variation were obtained based on the different umbrella samplings from the same TMD simulations. The initial structures for the umbrella samplings can be conveniently selected from the TMD trajectories. For the application of this computational method in the unfolding process of the HP35 protein, the PMF calculation along with the coordinate of the radius of gyration (Rg) presents the gradual increase of free energies by about 1 kcal/mol with the energy fluctuations. The feature of conformational transition for the unfolding process of the HP35 protein shows that the spherical structure extends and the middle α-helix unfolds firstly, followed by the unfolding of other α-helices. The computational method for the PMF calculations based on the combination of TMD simulations and umbrella samplings provided a valuable strategy in investigating detailed conformational transition pathways for other allosteric processes.
منابع مشابه
CTMS Fellowship Report
In the studies of force-induced conformational transitions of biomolecules, the large time-scale difference from experiments presents the challenge of obtaining convergent sampling for molecular dynamics simulations. To circumvent this fundamental problem, an approach combining the replica-exchange method and umbrella sampling (REM-US) is developed to simulate mechanical stretching of polysacch...
متن کاملConvergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association
Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein-lipid and protein-protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria ...
متن کاملUnraveling the Allosteric Inhibition Mechanism of PTP1B by Free Energy Calculation Based on Umbrella Sampling
Protein tyrosine phosphatase 1B (PTP1B) is a promising target for the treatment of obesity and type II diabetes. Allosteric inhibitors can stabilize an active conformation of PTP1B by hindering the conformational transition of the WPD loop of PTP1B from the open to the closed state. Here, the umbrella sampling molecular dynamics (MD) simulations were employed to compute the reaction path of the...
متن کاملIterative Force-Field Calculation and Molecular Dynamics of Cyclooctanone
Body's iterative force-field computer program has been used to calculate strain energies in cyclooctanone (I). 348 MHZ 1H NMR spectra of (I) have been investigated over the temperature range of 25° to -160°C. Two conformation processes affect the 1H NMR spectrum of (I). Iterative force-field calculations on the conformations and conformational interconversion paths of ...
متن کاملAn Ab Initio SCF-MO Study of Conformational Properties of Cyclodeca-1,2,3-triene
Ab initio calculation at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the important energyminimumconformations and transition-state geometries of of cyclodeca-1,2,3-triene (1). The mostfavorable conformation of 1 is a unsymmetrical twist-chair (1-TC) structure. Degenerateinterconversion of 1-TC with it...
متن کامل